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Abstract

Based on a simple, chromatography-based analogy, a quantitatively exact explanation for the strong additional band
broadening induced by the presence of the side-walls in flow channels with a large aspect-ratio rectangular cross-section is
given and validated for two different flow types: pressure-driven and shear-driven flow.  2002 Elsevier Science B.V. All
rights reserved.
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1. Introduction chromatographic separations, rectangular channels
offer a number of desirable detection and heat

The passive dispersion of tracers in laminar flows dissipation characteristics [7]. With the introduction
through channels with a large aspect-ratio rectan- of the powerful micromachining techniques of the
gular cross-section (i.e. with w /d 4 1) has already microelectronics industry, leading to the advent of
attracted the attention of many investigators. Such the lab-on-a-chip and the microfluidics concept,
flows are encountered in a wide variety of applica- rectangular channels have become a more popular
tions and systems [1,2], including separation and format and have been applied in a wide range of
reaction equipment, and ranging from microscale applications, including open-tubular CEC [8] and
on-chip systems to large-scale natural flow systems on-chip LC [9,10], but also for the conduction of
(e.g. rivers). In the 1980s, the use of channels with a on-chip catalytic gas phase reactions [2] and in
flat rectangular cross-section in analytical chemistry microchannel heat transfer systems [11]. Another
was mainly limited to the various forms of field flow recent interesting application of channels with a flat
fractionation [3,4] and to a few attempts related to rectangular cross-section is on-chip hydrodynamic
open-tubular LC [5] and GC [6]. For open-tubular chromatography [12], wherein rectangular channels

with a preferably submicron thickness (i.e. only a
limited number of times larger than the molecular
radius) are used for the size separation of large*Corresponding author. Tel.: 132-2-629-3251; fax: 132-2-
molecular mass molecules, without the need for a629-3248.

E-mail address: gedesmet@vub.ac.be (G. Desmet). stationary phase, but relying solely on the specific
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Table 1
Comparison between axial dispersion in a hypothetical infinite parallel plate channel (D ) and in a large aspect-ratio channel withax,`

side-walls (D )ax,sw

No side walls With side-walls (w /d 4 1)

u mL u mLm m
]] ]]Pressure-driven DP 5 12 (T1) DP 5 12 ? (T3)` sw2 2d d

2 2 2 2u d u d1 7.9512m m
] ]] ]] ]]D 5 ? D 5 ?ax,` ax,sw210 D 210 Dm m

Shear-driven DP 5 0 (T5) DP 5 0 (T7)` sw

2 2 2 2u d u d1 1.7366m m
] ]] ]] ]]D 5 ? (T6) D 5 ?ax,` ax,sw30 D 30 Dm m

interaction between the molecules and the radial for two different basic flow types (Fig. 1): one is the
parabolic velocity profile of the pressure flow field. customary pressure-driven flow, representative for

The intriguing aspect (see Table 1) of the obvious- most flow systems and applications, and one is the
ly simple case of a laminar flow through a channel so-called shear-driven flow, experimentally investi-
with a flat rectangular cross-section is that, whereas gated by Desmet and Baron [20], and generated by
the pressure-drop in the w /d 4 1 limit converges to axially moving a flat cover lid past a shallow open
the pressure-drop value of a hypothetical channel channel with flat rectangular cross-section. The
consisting of two infinite parallel plates without side- shear-driven flow offers a distinct advantage in LC:
walls [13], the effective axial dispersion surprisingly as it generates a fast and controllable flow without
does not reduce to the value calculated for the the need for a pressure gradient, it allows to fun-
infinite parallel plate channel, as was initially as- damentally circumvent the pressure-drop limitation
sumed by a number of authors [14,15], but converges on the fluid velocity in microchannels (see Poiseuil-
to a value which is significantly larger: a factor of les’ law). As a consequence, increases in separation
7.95 to be exactly. This has for the first time been velocity with a factor of 100 or more are potentially
pointed out by Doshi et al. [1] and has later been possible [21], provided that adapted injection and
confirmed by many authors, both theoretically and detection systems can be developed. A series of
experimentally. For chromatographic applications, preliminary shear-driven chromatographic separa-
important work has, amongst others, been done by tions has already been performed to deliver a practi-
Golay [16], Cifuentes and Poppe, [17] and by Martin cal proof of principle for the concept [22].
et al. [5,6]. A recent theoretical study related to this The remainder of the present contribution is
problem in etched microchannels for lab-on-a-chip divided into two parts. In Section 2, the calculation
applications is presented in [18].

The important (about eight times larger than in the
unrealistic side-wall less case) additional axial dis-
persion originating from the presence of the side-
walls has already been explained as the result of a
lateral diffusive exchange process between the
boundary layers near the side-walls and the bulk flow
in the central region of the channel [16,19], but a
physical explanation for the exact value of the factor
7.95 has not been given yet. In the present contribu-
tion, the side-wall effect is explained quantitatively
from the analogy with a simplified chromatographic Fig. 1. Schematic longitudinal view of the difference between a
system. The validity of this analogy is investigated pressure-driven (a) and a shear-driven flow (b).
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problem is introduced and the calculation methods with the boundary conditions given in Fig. 2a (with
used in literature are briefly reviewed. In Section 3, u 5 0), it is found that [13]:top

we present a simplified calculation method based on
2a chromatographic analogy. DP d 2S D]] ]u(z,y) 5 2 y2 mL 4
2 1`4 DP d 1 n p d

]]] ] ] ]F S DG2 O sin y 13 32. Velocity field and side-wall induced axial d 2mLp nn odd
dispersion in shear- and pressure-driven flows:

npzthe exact analytical calculation method ]]cosh S Dd
]]]]3 (2)npw

]]cosh S D2d2.1. Pressure-driven flow

Based on this expression, Doshi et al. [1] succeeded
Apart from the molecular diffusion, the single

in establishing an analytical solution for the long
source of band broadening or axial dispersion in a

time limit axial dispersion in a channel with straight
pressure-driven flow of unretained species between

side-walls (Eq. (T4)). The calculation is however
two infinite parallel plates is the presence of a

lengthy and complex, troubling the derivation of a
parabolic velocity gradient in the radial direction. In

physical explanation for the exact magnitude of the
this case, the axial dispersion can be represented [23]

side-wall effect [19]. The calculation is also extreme-
by the axial dispersion coefficient D given inax,` ly difficult, if not impossible, to repeat for channels
Table 1 (Eq. (T2)). In any practical system however,

with non-straight side-walls. Attempts have therefore
side-walls are present, and their viscous drag induces

been made to simplify the calculation. For the w 4

an additional (lateral) velocity gradient in the fluid
d case, the full 2-D calculation can be simplified

layers immediately adjacent to the side-walls. Solv-
[16,17] by decoupling the effect of the lateral and the

ing the appropriate Navier–Stokes equation:
radial velocity gradient, calculating the corre-
sponding dispersion coefficients D and D2 2 ax, y ax,z≠ u ≠ u DP independently, and then simply adding the two] ] ]1 5 2 (1)2 2 mL≠y ≠z effects:

Fig. 2. Cross-sectional view of the flat-rectangular channel and the boundary conditions for the flow (u 5 0 for the pressure-driven flowtop

and u 5 u for the sheardriven flow) (a) and top-view of the radially averaged flow profile (b).top w
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2 2D 5 D 1 D (3)ax,sw ax, y ax,z k u wz m
]]]D 5 (9)ax,z 4 DmolWhen w 4 d, this approach is justified [17] because

the diffusive equilibration across the y dimension The calculation of the k factor remains howeverz
(see Fig. 2a) occurs on a much shorter time scale laborious (cf. [17]), despite of the adopted simplifica-
than across the z dimension. In this simplified tion. For the w /d 4 1 limit, it is found that [16]:
approach, D is given by:ax, y 2d

]k 5 0.1324 (10)z 2D (D (4) wax, y ax,`

Inserting this expression into Eq. (9) and using Eq.
whereas D is exclusively based on the 1-D flowax,z (3) to calculate D it is found that (withax,swobtained after calculating the radial average of the

u → u when w /d 4 1):m m,`velocity field (see Fig. 2b):
2 2u d0.1324 1d / 2 m,`

]] ] ]]S DD 5 1 ?1 ax,sw 4 210 Dmol¯ ]u(z) 5 E u(z,y) dyd 2
2d / 2 u d7.951 m,`

]] ]]5 ? (11)npz 210 Dmol1` ]]cosh S DDP 96 1 d2]] ] ] ]]]]5 d 1 2 O ?4 4 npw The factor 7.951 in Eq. (11) is in perfect agreement12 mL p n3 4n odd ]]cosh S D with the full 2-D solution of Gill et al. [1] and2d
Chatwin and Sullivan [19]. The above calculation(5)
hence demonstrates the validity of the decoupling
method (cf. Eq. (3)) for the w /d 4 1 case.This 1-D flow is characterised by two narrow

boundary layers (order | d) near the side-walls and
2.2. Shear-driven flowdisplays a broad central region with a uniform axial

velocity equaling the average velocity between two
Similar to the pressure-driven case, a shear-driveninfinite parallel plates, given by [13]:

flow between two infinite parallel plates also only
DP 2 displays a radial velocity profile (see Fig. 1b). The]]u 5 d (6)m,` 12 m L corresponding axial dispersion coefficient (D ) hasax,`

recently been calculated [21] and is given in Eq.
From Eqs. (5) and (6), the cross-sectional averaged (T6). Again, the D value does not account for theax,`velocity u in a channel with side-walls can bem lateral velocity gradient induced by the presence of
calculated as: stationary side-walls. To account for it, solving:

w / 2
2 2

≠ u ≠ u1
] ]] ¯ 1 5 0 (12)u 5 E u(z) dz 2 2m w ≠y ≠z

2w / 2

1` with the boundary conditions given in Fig. 2a (i.e.192 d 1 npw
]] ] ]]5 u 1 2 O tanh S D (7)F G with u 5 u ), yields [21]:m,` 5 5 top ww 2dp nn odd

1`4u 1 p wwNumerically evaluating Eq. (7), it is found that [19]: ]] ]] ] ]u(z,y) 5 O sin F(2n 1 1) (z 1 )G
p 2n 1 1 w 2n50

d p d
]F Gu 5 u 1 2 0.630248 (w /d . 5) (8) ] ]F S DGsinh (2n 1 1) y 1m m,` w w 2

]]]]]]]]3 (13)
(2n 1 1)pdAccording to Aris [23], the long time limit axial ]]]]F Gsinh wdispersion coefficient for the 1-D flow shown in Fig.

2b can be written as: Adopting the decoupling method validated in Section
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2.1, and decoupling the dispersion problem by first 3. Calculation of D based on an equivalentax,sw

averaging u(z,y) in the y direction, it is found that: chromatographic system

1`4u w 1 p In order to further simplify the calculation ofw¯ ]] ] ]]] ]u(z) 5 O sin F(2n 1 1)2 2 D and in order to gain more physical insight ind wp (2n 1 1) ax,swn50

the origin of the side-wall induced axial dispersion,
d we propose, somewhat similar to the approach in [4],]F Gcosh (2n 1 1)p 2 1w w to divide the flow depicted in Fig. 2b into two] ]]]]]]]]3Sz 1 DG ?2 (2n 1 1)pd discrete regions (Fig. 3a): one central region with a]]]]F Gsinh w perfectly flat velocity profile and two regions near

(14) the side-walls with a zero velocity. In addition, we
also propose to consider the two stagnant regions as

Further averaging the velocity over the entire cross-
a chromatographic stationary phase layer (Fig. 3b),

section yields:
continuously exchanging tracer molecules with the

1` central plug flow region. Expressing that the flow-8u w 1w
]] ] ]]]u 5 ? O rates in the systems in Figs. 2b and 3a should bem 3 3dp (2n 1 1)n50 identical, the thickness (d ) of the two stagnant layers

d can be defined as:
]F Gcosh (2n 1 1)p 2 1w

]]]]]]]]? (15)
(2n 1 1)pd
]]]]F Gsinh w

Numerically evaluating Eq. (15), and noting that for
a shear-driven flow between two infinite plates the
mean fluid velocity is simply given by [13]:

u 5 u /2 (16)m,` w

it can be calculated that:

d
]F Gu 5 u 1 2 0.54275 (w /d . 5) (17)m m,` w

The D value corresponding to the 1-D flowax,z

determined by Eq. (14) can now be obtained in a
way similar to the analytical procedure referred to in
Section 2.1. For the w /d 4 1 case, it can be shown
that [21]:

2d
]k 5 0.0982 (18)z 2w

Or, using this value to calculate D (cf. theax,sw

establishment of Eq. (11)):

2 2u d0.0982 1 m,`
]] ] ]]S DD 5 1 ?ax,sw 4 30 Dmol

2 2u d1.736 m,` Fig. 3. Simplified equivalent system for the l-D flow in Fig. 2a]] ]]5 ? (19)30 D (a); and its chromatographic analog (b).mol
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andu2d m
] ]]u w 5 u (w 2 2d ) or 5 1 2 (20)m m,` 2 2w um,` 2 u (w 2 2d )1 2d m,`

] ] ]]]]S DD 5 ? (26)ax,c 12 w DmolFor the pressure-driven flow case, combining Eqs.
(8) and (20) yields:

Noting that w 2 2d(w when w /d 4 1, and intro-
ducing a factor k , Eq. (26) becomes:cd /d 5 0.315124 (21)

2 2 2 2
2 u w u wk1 2dFor the shear-driven flow case, combining Eqs. (17) m,` m,`c

] ] ]]] ] ]]]S DD ( ? 5 ? (27)ax,cand (20) yields: 12 w D 4 Dmol mol

d /d 5 0.271375 (22) Eq. (27) clearly has a form similar to Eq. (9). Noting
that u → u when w /d 4 1, the agreement be-m m,`

Now, to calculate the peak broadening in the equiva- tween D (original continuous problem) and Dax,z ax,c
lent system presented in Fig. 3b, a well-established, (simplified chromatographic problem) can now sim-
but seldom-used relationship derived by Giddings ply be verified by comparing k and k . From Eq.z c
[24] can be used. Eq. (23) describes the peak (27), it follows directly that:
broadening originating from a chromatographic ex-

22change process in a channel with parallel surfaces, 1 2d 1 2d d
] ] ] ] ]S D S Dk 5 5 ? (28)c 2coated with a uniform stationary phase and with a 3 w 3 d w

mobile phase flow displaying a uniform (plug flow)
velocity profile: Using the d /d value for the pressure-driven flow case

Eq. (21), Eq. (28) yields:
2 22 u d 2d91 k c c c

]]]]]] ]D 5 with k9 5 K (23)ax,c 2 212 D d(l 1 k9) dm c
]k 5 0.132404 (29)c 2w

In Eq. (23), K represents the equilibrium distribution
coefficient between the mobile and the stationary This value corresponds exactly (see Table 2) to the
phase in a chromatographic column. Expressing the k value for the w /d 4 1 limit obtained via thez

equivalence between the single fluid flow system in conventional Aris calculation [23] method given in
Fig. 3a and the general chromatographic system Eq. (10). For the shear-driven case, the value of d /d
depicted in Fig. 3b, we obtain: should be taken from Eq. (22), and Eq. (28) yields:

2d 5 d (24a) dc
]k 5 0.098192 (30)c 2w

d 5 w 2 2d (24b)c

u 5 u (24c) Table 2c m,`
Comparison between the Aris coefficient k calculated from the
exact continuous flow system (D ) and from the equivalentax,swK 5 1 (24d) chromatographic system (D )ax,c

Exact EquivalentEq. (24d) expresses the absence of any partitioning
solution chromatographic

between the stagnant and the moving phase in the system
single fluid system depicted in Fig. 3a. With Eqs. aPressure-driven k 50.1324 k 50.132404z c(24a–d), Eq. (23) becomes: bShear-driven k 50.0982 k 50.098192z c

a Value taken from [16].2d k9 2d
b]] ]] ] Value taken from [21].k9 5 and 5 (25)w 2 2d 1 1 k9 w
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This value again agrees perfectly with the exact k Greek symbolsz

value given in Eq. (18). d stagnant layer thickness, defined in Eq.
(20) (L)

d thickness of chromatographic stationaryc

phase layer, see Fig. 3a, (L)
4. Conclusion

DP pressure gradient (Pa)
k Aris coefficient, see Eq. (9) (\)

The w /d 4 1 limit for the side-wall induced axial
m dynamic viscosity [M/(L.T)]

dispersion in laminar flows through flat rectangular
channels can be exactly derived from the simplified

Subscriptschromatographic system given in Fig. 3. This system
c equivalent chromatographic systemallows to understand in a quantitatively exact manner
m mean (averaged across channel cross-why the presence of the side-walls in channels with a

section)high aspect-ratio rectangular cross-section keeps on
sw Value obtained when accounting forcontributing to the axial dispersion, even when w /

presence of side-wallsd 4 1: although the fraction of the channel occupied
top top wall in Fig. 2aby the stagnant fluid layers is of order | d /w and
w moving wall in shear-driven flowhence tends to zero when w /d 4 1 with given d, the
` infinite flat plate systemlateral distance (5channel thickness in the equiva-

lent chromatographic system in Fig. 3b) over which
the diffusive exchange between the stagnant side
layers and the central bulk flow has to occur is of Acknowledgements
order | w, and hence increases when w /d 4 1 with
given d. The present calculation has now shown that, Part of this work has been supported by the IUAP
when considering the hydrodynamic boundary layer 4-11 of the Belgian federal government and by the
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