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Abstract

Based on a simple, chromatography-based analogy, a quantitatively exact explanation for the strong additional band
broadening induced by the presence of the side-walls in flow channels with a large aspect-ratio rectangular cross-section is
given and validated for two different flow types: pressure-driven and shear-driven flow. O 2002 Elsevier Science BV. All

rights reserved.
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1. Introduction

The passive dispersion of tracers in laminar flows
through channels with a large aspect-ratio rectan-
gular cross-section (i.e. with w/d > 1) has aready
attracted the attention of many investigators. Such
flows are encountered in a wide variety of applica-
tions and systems [1,2], including separation and
reaction equipment, and ranging from microscale
on-chip systems to large-scale natura flow systems
(e.g. rivers). In the 1980s, the use of channels with a
flat rectangular cross-section in analytical chemistry
was mainly limited to the various forms of field flow
fractionation [3,4] and to a few attempts related to
open-tubular LC [5] and GC [6]. For open-tubular
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chromatographic separations, rectangular channels
offer a number of desirable detection and heat
dissipation characteristics [7]. With the introduction
of the powerful micromachining techniques of the
microelectronics industry, leading to the advent of
the lab-on-a-chip and the microfluidics concept,
rectangular channels have become a more popular
format and have been applied in a wide range of
applications, including open-tubular CEC [8] and
on-chip LC [9,10], but aso for the conduction of
on-chip catalytic gas phase reactions [2] and in
microchannel heat transfer systems [11]. Another
recent interesting application of channels with a flat
rectangular cross-section is on-chip hydrodynamic
chromatography [12], wherein rectangular channels
with a preferably submicron thickness (i.e. only a
limited number of times larger than the molecular
radius) are used for the size separation of large
molecular mass molecules, without the need for a
stationary phase, but relying solely on the specific

0021-9673/02/$ — see front matter [ 2002 Elsevier Science BV. All rights reserved.

PIl: S0021-9673(01)01546-1



52 G. Desmet, GV. Baron / J. Chromatogr. A 946 (2002) 51-58

Table 1

Comparison between axial dispersion in a hypothetical infinite parallel plate channel (D, ..) and in a large aspect-ratio channel with

side-wals (D, )

No side walls

With side-walls (w/d > 1)

u, nb

Pressure-driven AP, =12 e
1 u?d?
Du- =310 "D,
Shear-driven AP, =0
a= 30 D

(T1) AP, =12-

u, ub
FE (T3)

5 _ 7.9512 u; d”
asw 210 D

(T5) AP, =0 (T7)

17366 upd’
=™ 30 D

interaction between the molecules and the radial
parabolic velocity profile of the pressure flow field.

The intriguing aspect (see Table 1) of the obvious-
ly simple case of a laminar flow through a channel
with a flat rectangular cross-section is that, whereas
the pressure-drop in the w/d > 1 limit converges to
the pressure-drop value of a hypothetical channel
consisting of two infinite parallel plates without side-
walls [13], the effective axial dispersion surprisingly
does not reduce to the value calculated for the
infinite parallel plate channel, as was initialy as-
sumed by a number of authors [14,15], but converges
to a value which is significantly larger: a factor of
7.95 to be exactly. This has for the first time been
pointed out by Doshi et a. [1] and has later been
confirmed by many authors, both theoretically and
experimentally. For chromatographic applications,
important work has, amongst others, been done by
Golay [16], Cifuentes and Poppe, [17] and by Martin
et a. [5,6]. A recent theoretical study related to this
problem in etched microchannels for lab-on-a-chip
applications is presented in [18].

The important (about eight times larger than in the
unredlistic side-wall less case) additional axial dis-
persion originating from the presence of the side-
walls has aready been explained as the result of a
lateral diffusive exchange process between the
boundary layers near the side-walls and the bulk flow
in the central region of the channel [16,19], but a
physical explanation for the exact value of the factor
7.95 has not been given yet. In the present contribu-
tion, the side-wall effect is explained quantitatively
from the analogy with a simplified chromatographic
system. The validity of this analogy is investigated

for two different basic flow types (Fig. 1): one is the
customary pressure-driven flow, representative for
most flow systems and applications, and one is the
so-called shear-driven flow, experimentally investi-
gated by Desmet and Baron [20], and generated by
axially moving a flat cover lid past a shallow open
channel with flat rectangular cross-section. The
shear-driven flow offers a distinct advantage in LC:
as it generates a fast and controllable flow without
the need for a pressure gradient, it allows to fun-
damentally circumvent the pressure-drop limitation
on the fluid velocity in microchannels (see Poiseuil-
les' law). As a consequence, increases in separation
velocity with a factor of 100 or more are potentially
possible [21], provided that adapted injection and
detection systems can be developed. A series of
preliminary shear-driven chromatographic separa-
tions has already been performed to deliver a practi-
cal proof of principle for the concept [22].

The remainder of the present contribution is
divided into two parts. In Section 2, the calculation
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Fig. 1. Schematic longitudinal view of the difference between a
pressure-driven (a) and a shear-driven flow (b).
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problem is introduced and the calculation methods
used in literature are briefly reviewed. In Section 3,
we present a simplified calculation method based on
a chromatographic analogy.

2. Veocity field and side-wall induced axial
dispersion in shear- and pressure-driven flows:
the exact analytical calculation method

2.1. Pressure-driven flow

Apart from the molecular diffusion, the single
source of band broadening or axia dispersion in a
pressure-driven flow of unretained species between
two infinite parallel plates is the presence of a
parabolic velocity gradient in the radial direction. In
this case, the axial dispersion can be represented [23]
by the axial dispersion coefficient D, .. given in
Table 1 (Eq. (T2)). In any practical system however,
side-walls are present, and their viscous drag induces
an additional (lateral) velocity gradient in the fluid
layers immediately adjacent to the side-walls. Solv-
ing the appropriate Navier—Stokes equation:

2

0°u  9°u AP

with the boundary conditions given in Fig. 2a (with
Uyop = 0), it is found that [13]:

AP (d*
Uz =5\ 4 Y
SLELUS S WL
ula® noddn35|n d\Y72

cosh (%)
cosh (%) @

Based on this expression, Doshi et al. [1] succeeded
in establishing an analytical solution for the long
time limit axial dispersion in a channel with straight
side-walls (Eq. (T4)). The calculation is however
lengthy and complex, troubling the derivation of a
physical explanation for the exact magnitude of the
side-wall effect [19]. The calculation is also extreme-
ly difficult, if not impossible, to repeat for channels
with non-straight side-walls. Attempts have therefore
been made to simplify the calculation. For the w >
d case, the full 2-D calculation can be simplified
[16,17] by decoupling the effect of the lateral and the
radial velocity gradient, calculating the corre-
sponding dispersion coefficients D, , and D,
independently, and then simply adding the two
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Fig. 2. Cross-sectiona view of the flat-rectangular channel and the boundary conditions for the flow (u,,, = O for the pressure-driven flow

and Uy,

=u,, for the sheardriven flow) (a) and top-view of the radially averaged flow profile (b).
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D, ., =D, ,+D 3)

ax,sw ax,y ax,z

When w > d, this approach is justified [17] because
the diffusive equilibration across the y dimension
(see Fig. 28) occurs on a much shorter time scale
than across the z dimension. In this simplified
approach, D,, , is given by:

Dax,y = Dax,w (4)

whereas D, , is exclusively based on the 1-D flow
obtained after calculating the radial average of the
velocity field (see Fig. 2b):

d/2
_ 1
u2 =73 f u(zy) dy
—d/2
nmwz
_ AP _96 £ 003*1(—)

5

This 1-D flow is characterised by two narrow
boundary layers (order ~d) near the side-walls and
displays a broad central region with a uniform axial
velocity equaling the average velocity between two
infinite parallel plates, given by [13]:

AP e

Un= =12 0 L (6)

From Egs. (5) and (6), the cross-sectional averaged

velocity u,, in a channel with side-walls can be
calculated as:
w/2
2 g
Un =1 u(z) dz
—w/2
12 d < 1
Uy | 1= 5y 2 Csten ann ("5 )]

Numerically evaluating Eq. (7), it is found that [19]:

u,=u

d
1- O.630248W] (w/d>5) (8

m m, o

According to Aris [23], the long time limit axial
dispersion coefficient for the 1-D flow shown in Fig.
2b can be written as:

K, U2 W

Das =3 D ©)

The calculation of the «, factor remains however
laborious (cf. [17]), despite of the adopted simplifica-
tion. For the w/d > 1 limit, it is found that [16]:

2

d
K, = 0.1324—; (10)
W

Inserting this expression into Eq. (9) and using Eq.
(3) to caculae D,, it is found that (with
Uyp = Uy When w/d > 1):

_(0.1324 i) U, &°
asw =\~ 4 210/ D,
7951 Uy, d’
=210 D (11)

mol

The factor 7.951 in Eq. (11) is in perfect agreement
with the full 2-D solution of Gill et a. [1] and
Chatwin and Sullivan [19]. The above calculation
hence demonstrates the validity of the decoupling
method (cf. Eq. (3)) for the w/d > 1 case.

2.2, Shear-driven flow

Similar to the pressure-driven case, a shear-driven
flow between two infinite parallel plates also only
displays a radia velocity profile (see Fig. 1b). The
corresponding axial dispersion coefficient (D, ..) has
recently been calculated [21] and is given in Eq.
(T6). Again, the D, .. value does not account for the
lateral velocity gradient induced by the presence of
stationary side-walls. To account for it, solving:

2 2
g0 (12)
- oz
with the boundary conditions given in Fig. 2a (i.e.
with u,,, = u,,), yields [21]:

u, <1 T, W
uizy) 2720 re il [(Zn + 1)W(Z+E)]

sinh [(Zn + 1)%<y+g> ]

x o [(2n+1)7rd] (13)

w

Adopting the decoupling method validated in Section
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2.1, and decoupling the dispersion problem by first
averaging u(z,y) in the y direction, it is found that:

+oo

_ W 1 . T
u@2 = ?E zo —(2n 1) sin [(Zn + 1)W

@]

cosh [(2n+ 1)77%] -1

snh [(2n -l;Nl)ﬂ'd]

(14)
Further averaging the velocity over the entire cross-
section yields:

8u, W& 1
u. =——73-+-— R
™7 diS@n+1)°
d
cosh (2n+1)7TW -1

dnh [(Zn + 1)7Td]

w

(15)

Numerically evaluating Eq. (15), and noting that for
a shear-driven flow between two infinite plates the
mean fluid velocity is simply given by [13]:

U,..=u,/2 (16)

it can be calculated that:

d
Up=Up,. | 1— 0'54275W (w/d >5) (17)
The D, , value corresponding to the 1-D flow
determined by Eqg. (14) can now be obtained in a
way similar to the analytical procedure referred to in

Section 2.1. For the w/d > 1 casg, it can be shown
that [21]:

2

d
k, = 0.0982 — (18)
W

Or, using this value to calculate D, , (cf. the
establishment of Eq. (11)):

_<0.0982 1 ) Up,.. &°
s =\"4 '30) D

mol

1736 U3 d?
T 3 D

(19)

mol

3. Calculation of D

ax,sw

chromatographic system

based on an equivalent

In order to further simplify the calculation of
D, @d in order to gain more physical insight in
the origin of the side-wall induced axial dispersion,
we propose, somewhat similar to the approach in [4],
to divide the flow depicted in Fig. 2b into two
discrete regions (Fig. 3a): one central region with a
perfectly flat velocity profile and two regions near
the side-walls with a zero velocity. In addition, we
also propose to consider the two stagnant regions as
a chromatographic stationary phase layer (Fig. 3b),
continuously exchanging tracer molecules with the
central plug flow region. Expressing that the flow-
rates in the systems in Figs. 2b and 3a should be
identical, the thickness (6) of the two stagnant layers
can be defined as:

-w/2 0 w/i2  Z_
uoo I oF uoo
) 0
w
(a)
i 7]
%
-w/2 0 w/2 2
é
%
u,. - - u,
3, d. 3.
(b)

Fig. 3. Simplified equivalent system for the I-D flow in Fig. 2a
(@; and its chromatographic analog (b).
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26 Up,
UW=Ug, . (W—26) or = 1- U (20)
For the pressure-driven flow case, combining Egs.
(8) and (20) yields:

8/d = 0.315124 (21)

For the shear-driven flow case, combining Egs. (17)
and (20) yields:

8/d = 0.271375 (22)

Now, to calculate the peak broadening in the equiva-
lent system presented in Fig. 3b, a well-established,
but seldom-used relationship derived by Giddings
[24] can be used. Eq. (23) describes the peak
broadening originating from a chromatographic ex-
change process in a channel with parallel surfaces,
coated with a uniform stationary phase and with a
mobile phase flow displaying a uniform (plug flow)
velocity profile:

1 K? uidl
e 12 (1 +k')* Dy

25,
K (23)

D d.

with k' =

In Eq. (23), K represents the equilibrium distribution
coefficient between the mobile and the stationary
phase in a chromatographic column. Expressing the
equivalence between the single fluid flow system in
Fig. 3a and the general chromatographic system
depicted in Fig. 3b, we obtain:

6,=9 (249)
d =w—25 (24b)
U, =Up.. (24¢)
K=1 (24d)

Eq. (24d) expresses the absence of any partitioning
between the stagnant and the moving phase in the
single fluid system depicted in Fig. 3a. With Egs.
(24a—d), Eq. (23) becomes:

26 kK 25

K=w—2s 3 7 W

(25)

and
1/26\2 Ui, (w—28)°
Danfﬁ(w) "~ b (26)

mol

Noting that w—256=w when w/d > 1, and intro-
ducing a factor «,, Eq. (26) becomes:

1(25)2 uzm,mW2 K, l.lfn’x,W2
Pac=12\w/) "D,y ~4 D (@7

mol

Eq. (27) clearly has aform similar to Eq. (9). Noting
that u, - u,, .. when w/d > 1, the agreement be-
tween D, , (origina continuous problem) and D, .
(simplified chromatographic problem) can now sim-
ply be verified by comparing «, and k.. From Eq.
(27), it follows directly that:

1/26\2 1/26\ d?
w=3(w) =3(%) (28)
Using the 6/d value for the pressure-driven flow case
Eq. (21), Eq. (28) yidlds:

2

d
K, =0.132404— (29)

This value corresponds exactly (see Table 2) to the
k, value for the w/d > 1 limit obtained via the
conventional Aris calculation [23] method given in
Eg. (10). For the shear-driven case, the value of é6/d
should be taken from Eq. (22), and Eq. (28) yields:

2

d
K, = 0098192 7 (30)

Table 2

Comparison between the Aris coefficient « calculated from the
exact continuous flow system (D, ) and from the equivalent
chromatographic system (D, .)

Exact Equivaent
solution chromatographic
system
Pressure-driven k,=0.1324" K, =0.132404
Shear-driven k,=0.0982" k,=0.098192

“Value taken from [16].
® Value taken from [21].
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This value again agrees perfectly with the exact «,
value given in Eg. (18).

4. Conclusion

The w/d > 1 limit for the side-wall induced axial
dispersion in laminar flows through flat rectangular
channels can be exactly derived from the simplified
chromatographic system given in Fig. 3. This system
alows to understand in a quantitatively exact manner
why the presence of the side-walls in channels with a
high aspect-ratio rectangular cross-section keeps on
contributing to the axial dispersion, even when w/
d > 1: although the fraction of the channel occupied
by the stagnant fluid layers is of order ~d/w and
hence tends to zero when w/d > 1 with given d, the
lateral distance (=channel thickness in the equiva-
lent chromatographic system in Fig. 3b) over which
the diffusive exchange between the stagnant side
layers and the central bulk flow has to occur is of
order ~w, and hence increases when w/d > 1 with
given d. The present calculation has now shown that,
when considering the hydrodynamic boundary layer
with thickness 6 to act as a stationary phase with
distribution coefficient K =1, both effects counter-
balance each other in accordance with Giddings
equation for the chromatographic peak broadening in
a channel with paralel stationary phase walls and a
uniform (i.e. plug-like) mobile phase flow (Eq. (23)).
The fact that this holds in a quantitatively exact
manner for both the case of the pressure-driven and
of the shear-driven flow points at the generality of
the argument.

5. Nomenclature

channel thickness (L)

diffusion coefficient (L*/T)

dispersion coefficient (L*/T)

retention factor in chromatographic sys-
tem (\)

partitioning coefficient (\)

axial velocity (L)

channel width (L)

N4 resp. radial and lateral coordinate (L)

mol

NOOoOaoe

=X

Greek symbols

é stagnant layer thickness, defined in Eq.
(20) (L)

0, thickness of chromatographic stationary
phase layer, see Fig. 3a, (L)

AP pressure gradient (Pa)

K Aris coefficient, see Eq. (9) (\)

o dynamic viscosity [M/(L.T)]

Subscripts

c equivalent chromatographic system

m mean (averaged across channel cross-
section)

sw Vaue obtained when accounting for
presence of side-walls

top top wall in Fig. 2a

w moving wall in shear-driven flow

0 infinite flat plate system
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